Technological Advantages of Mobile IPv6

Nokia Research Center Mountain View, CA USA Charles E. Perkins http://people.nokia.net/charliep

charliep@iprg.nokia.com

Slide 2

Outline of Presentation

- · Mobile IP in General
- · What's great for mobility about IPv6?
- · Recent results from Mobile IPv6
- · Context Transfer and Seamless Handover
- Challenges for the future

NOKIA

Slide 3

Earth with 2 Billion Mobile devices

- One billion is a large number; we'll be there this year or next
- · It's never been done before!
- In the beginning, most of them will not be Internet enabled, but they will come online rapidly

 If IPv4 can do it at all, it will be at a tremendous (unimaginable, even) cost in complexity

 Only IPv6 offers enough addresses; the Internet is still young!

 IPv6 also offers the features needed for mobile networking

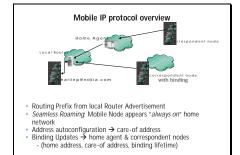
- Only Mobile IPv6 takes advantage of the IPv6 features to offer seamless roaming.
- Network-layer roaming also enables significant cost reductions and improved deployability

Protocol Stacks vs. Mobility

- Mobility affects every layer of the protocol stack
 Physical layer: variable S/N ratio, directionality, etc.
 Link-layer: error correction, hidden terminal effects, ...
 Network layer: what this talk is about!
 Transport layer: congestion vs. errors, 7QoS?
 Application configurability, service discovery
- Eventually, the Internet will be dominated by mobile nodes
 but as of now the IETF effort doesn't reflect this!
- · Low level protocols attempt to provide transparency
- But application protocols sometimes need triggers
 → need for new APIs to support mobility
- · Levels 8, 9, and 10 are also affected by mobility
- Profile management and adaptive network environment

Slide 5

Why Mobile IP?


- Both ends of a TCP session (connection) need to keep the same IP address for the life of the session.

 This is the home address, used for end-to-end
- communication
- IP needs to change the IP address when a network node moves to a new place in the network.
 This is the care-of address, used for routing

- Mobile IP considers the mobility problem as a routing problem
 managing a binding that is, a dynamic tunnel between a
 care-of address and a home address
 Of course, there is a lot more to it than that!

NOKIA

Slide 6

IPv6 features used for Mobile IPv6

- Enough Addresses
- · Enough Security (we thought)
- Address Autoconfiguration for getting care-of addresses
- Destination Options (and, now, Mobility) extension headers
- · also, reduced Soft-State, etc., not covered here

Slide 8

Features added

- Binding Cache management in new Mobility Header
 (a lot like the existing Destination Options header)
- Route optimization using new Route Header
 (Almost exactly like the existing Route Header was used)

- New ICMP messages
 For Home Agent discovery

 New Router Advertisement extension
 For renumbering
 Binding Request message type

NOKIA

Slide 9

Enough Addresses

- 340 undecillion addresses (340,282,366,920,938,463,463,374,607,431,768,211,456) total!
- Needed for billions of IP-addressable wireless handsets over the next 20 years
- IPv4 address space crunch driving current deployment of NAT
 But, multi-level NAT unknown/unavailable
 Besides, NAT not useful for *always on* operation
- Even more IP addresses needed for embedded wireless!
- Especially interesting for China now
 22 million IPv4 addresses and 130+ million handsets

Route Optimization

- Most Internet devices will be mobile, so we should design for that case for the health of the future Internet
- Binding Update SHOULD be part of every IPv6 node implementation, according to IETF specification
- Reduces network load by ~50%
 (depending on your favorite traffic model)
- Route Optimization could double Internet performance

- one opininization could *adultie* internet performa-reduced latency better bandwidth utilization reduced vulnerability to network partition eliminate any potential Home Agent bottleneck

NOKIA

Slide 11

Message Types

- Binding Cache Maintenance
 Binding Update
 Binding Acknowledgement
 Binding Request
- Home Address Option

- Return Routability Tests
 Home Address Test Initiate
 Care-of Address Test Initiate
 Home Address Test
 Care-of Address Test

- Renumbering Messages

 Mobile Prefix Solicitation

 Mobile Prefix Advertisement
- · Home Agent Discovery

NOKIA

Slide 12

Header Types

- Mobility Header
 All Binding Cache messages
 Return Routability messages (HoTI, CoTI, HoT, CoT)

 New Routing Header for comfortable firewall administration
 Used by correspondent nodes
 Has intermediate node = mobile node's care-of address (cannot be forwarded)
 Presmably makes firewall administrators happier

- Destination Option Header contains Home Address Option
- · IPv6 in IPv6 encapsulation
- Non-Final Mobility Header
 Same messages, but can carry payload also
 Should be a working-group document by the this time
- ICMP for Home Agent Discovery

Ingress Filtering and Home Address Option

- Ingress filtering border routers enforce topologically correct source IP address fields
- End-to-end applications want to deal with home address exclusively
- Topological correctness requires the care-of address to be in the Source IP address field
- IP traditionally passes the Source IP address field up to higher level protocol (e.g., TCP)
- Home Address Option changes this behavior, so that the option data is passed instead (i.e., the home address!)
- Result: topological correctness AND stable identification for higher-level protocols

Slide 14

Establishing a Binding Security Association

- BSA is needed specifically for authenticating Binding Updates
- Return Routability (RR) tests rely on routing infrastructure
- Mobile IPv6 RR enables mobile authentication not identification
- Latter could require validation via certificate authority
 The correspondent node only has assurance that the Binding
 Update comes from the same node as before
- · Mobile IPv6 solution resists Denial of Service (DoS) attacks
- "First, do no harm"
 - inst, up to haim.
 That is, we must be as safe as communications between statically located IPv4 network nodes.
 Only nodes between correspondent node and home network can disrupt traffic.

NOKIA

Slide 15

RR Protocol Overview

- · Test return routability for home address (HoTI, HoT)
- · Test return routability for care-of address (CoTI, CoT)
- · HoT and CoT carry nonces to be combined to make Kbu
- · Very few nodes see nonces in both HoT and CoT BSA in current specification is short-lived
- Correspondent node keeps no per-mobile state during HoT/CoT
- Diffie-Hellman could be another option
 but it's either expensive or patented

Mobile IPv6 status

- Mobile IPv6 testing event Sept 15-17, 1999
 Bull, Ericsson, NEC, INRIA
- ETSI bake-offs, 2000 & 2001 success!
- · Connectathon March 2000, 2001, 2002 success!
- · Return Routability for Key Establishment
- Distinguishing between renumbering and movement
 tunneled router solicitations and advertisements
- · Authentication data in option, as well as in AH or ESP(?)
- Fast handover design team has issued Internet Draft
- Chairs and ADs are pushing for re-completion
 Draft ...-17.txt issued on Monday, may go to Last Call
 Draft ...-18.txt is quite likely to be needed early June

Slide 17

Advantages and Features of Mobile IPv6

- Scalable approach to transparent mobility management
- Applications really can continue to work without modification
- Performance is quite acceptable, and rarely should burden network capacity
- New New Statures with very little change address autoconfiguration authentication requires no address-space partitioning reduced implementation requirements
- Scalable approach to establishing Binding Security Associations
- Network renumbering in home domain or foreign domain without restarting mobile device
- · Home Agent discovery

NOKIA

Slide 18

Smooth/Fast/Seamless Handover

- Smooth handover == low loss
- Fast handover == low delay
 30 ms?
 Can router pre-empt Duplicate Address Detection??
- Seamless handover == smooth and fast

Context Features for Transfer

- Feature state established to minimize connection overhead
 Mainly, to conserve bandwidth
- · Header Compression
- Buffered Data
- Quality of Service requirements, and perhaps accounting data
- Security Association with access router, authorization tokens
- Application context transfer also needed, but not appropriate for resolution within mobile-ip, aaa, rohc, or seamoby working groups
- Care-of Address, MAC address, etc. handled via fast handover

Slide 20

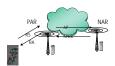
Context Transfer Framework

- Control messages
 H and Hack (ICMP messages) from Mobile IPv6 fast handover design team are good candidates
 What about scenarios besides smooth handovers?
 Context features requested/provided as options
 Could be another ICMP message, or SCTP, or Dest Opt, or ??

- Generic Profile types

 Could be used with any control messages

 Most kinds of context features will have a number of variants, each with different profile types (e.g., DoS, or [rohd.))


 Profile types would be registered with IANA, and each specification would lay out fields of suboptions

 Presence vectors/default values for each field

NOKIA

Slide 21

Mobile-controlled handover

One scenario: mobile sends special Router Solicitation (RS)

- Previous Access Router → Proxy Router Advert. (RA)
- · Previous Access Router sends Handover Initiate (HI)
- New Access Router → Handover Acknowledge (HACK)

- Previous access router (PAR) sends Proxy Router Advertisement on behalf of the new access router (NAR)
 contains prefix and lifetime information, etc.
- PAR sends Handover Initiate message to NAR
- Mobile node SHOULD finalize context transfer at NAR

Slide 23

Challenges for Mobile IPv6

- Achieving Proposed Standard (esp. re: HAO)
- Legacy equipment and smooth transition (esp. with HLR)
- Walled Gardens (mobile access to all Internet services desired)
 Application adaptations to mobility (new APIs needed)
- Security protocol development, deployment (key distribution)
- Maintaining same level of quality as in current cellular (help from [seamoby])
 Enabling ad hoc networking (what is the business model?)
- Governmental considerations (Location)
- Harmonizing 3GPP and 3GPP2
- · Video?
- Social awareness to restore the end-to-end application model (vs., e.g., NATs)

NOKIA

Slide 24

Summary and Conclusions

- Mobile IPv6 offers scalable, secure, and high-performance mobility management
- Mobile IPv6 is working, and new issues are resolved
 There's lots of interoperability experience, but new draft is different
- Implementation is natural under IPv6 and IPsec
- Binding Update now has a lightweight key establishment protocol
 First, do no harm
- Fast Handover has been developed for improved handover performance (goal: smooth voice handovers and, video!)
- Context Transfer to preserve link contexts to avoid reestablishment (gaining further performance improvements)