
CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 2

White Paper
DSP0138 Status: Preliminary
Copyright © 2002 Distributed Management Task Force, Inc. (DMTF). All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems management
and interoperability. Members and non-members may reproduce DMTF specifications and documents for uses consistent
with this purpose, provided that correct attribution is given. As DMTF specifications may be revised from time to time, the
particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third party patent rights,
including provisional patent rights (herein "patent rights"). DMTF makes no representations to users of the standard as to
the existence of such rights, and is not responsible to recognize, disclose, or identify any or all such third party patent
right, owners or claimants, nor for any incomplete or inaccurate identification or disclosure of such rights, owners or
claimants. DMTF shall have no liability to any party, in any manner or circumstance, under any legal theory whatsoever,
for failure to recognize, disclose, or identify any such third party patent rights, or for such party’s reliance on the standard
or incorporation thereof in its product, protocols or testing procedures. DMTF shall have no liability to any party
implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner or claimant, and
shall have no liability or responsibility for costs or losses incurred if a standard is withdrawn or modified after publication,
and shall be indemnified and held harmless by any party implementing the standard from any and all claims of
infringement by a patent owner for such implementations.

CIM Diagnostic Model White Paper
CIM Version 2.9

Document Version 1.0 July 6, 2004

Abstract

Diagnostics is a critical component of systems management. Diagnostic services are
utilized in problem containment to maintain availability, achieve fault isolation for
system recovery, establish system integrity during boot, increase system reliability, and
perform routine preventive maintenance. The goal of the Common Diagnostic Model
(CDM) is to define industry standard building blocks based upon, and consistent with, the
DMTF Common Information Model (CIM), that enables seamless integration of vendor-
supplied diagnostic services into system and SAN management frameworks.

In this paper, the motivation behind CDM is presented. In addition, the core architecture
of the CDM is presented in the form of a diagnostic schema. The original version of the
schema is presented (CIM V2.3), along with extensions introduced beginning with V2.7.
Proper usage of the schema extensions is presented in a tutorial manner. Future direction
for the CDM is discussed to further illustrate the motivations driving CDM development,
including interoperability, self-management, and self-healing of compute resources.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 3

Change History

Version 0.1 Russ Carr Initial: Intro Draft & outline

Version 0.2 Russ Carr Team reviewed sections: 1-2.2

Version 0.3 Russ Carr

Ray Pedersen

Michael Kehoe

Barbara Craig

Re-organized & revised sections 2.3-2.7

- sections 2.3, 2.6, & 2.7

- section 2.4

- section 2.5

Version 0.4 Ray Pedersen Modifies outline, content largely
unchanged.

Version 0.5 Ray Pedersen

Michael Kehoe

Rob Branch

Content clarification and corrections

Version 0.6 Ray Pedersen Cleanup for tm-diag final review

Version 0.7 Ray Pedersen Added “Who Should Read the Paper”

Added some terms and conventions

Updated with tm-diag feedback

Version 0.8 Ray Pedersen Updated with comments from tm-diag
and sysdev reviews.

Version 0.9 Ray Pedersen First ballot feedback.

Version 0.91 Rob Branch Minor content corrections and
clarifications

Version 0.92 Ray Pedersen Cleanup for V2.8 review.

Version 0.93 Ray Pedersen Cleanup for V2.8 review.

Version 0.94 Ray Pedersen Cleanup for V2.8 review.

Incorporate new CRs for LogOptions
and ConcreteJob.

Version 0.95 Ray Pedersen Update for CIM V2.9

New Logging mechanism.

Version 1.0 Ray Pedersen Submitted to SysDev for Review

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 4

TABLE OF CONTENTS

ABSTRACT .. 2

CHANGE HISTORY ... 3

1 INTRODUCTION ... 7

1.1 Overview.. 7

1.2 Goals .. 8
1.2.1 Manageability through Standardization.. 8
1.2.2 Interoperability ... 8
1.2.3 Diagnostic Effectiveness .. 8
1.2.4 Global Access ... 9
1.2.5 Life-cycle Applicability.. 9

1.3 Who Should Read this Paper... 9

1.4 CDM Versions... 9

1.5 Background Reference Material ... 10

1.6 Terminology .. 10

1.7 Conventions Used in this Document ... 10

2 MODELING DIAGNOSTICS.. 12

2.1 Consumer - Provider Protocol... 12

2.2 Implementation Neutral Modeling.. 12

2.3 Backward Compatibility.. 12

2.4 Diagnostics are Services ... 13

2.5 Diagnostics are Applied to Managed Elements.. 13

2.6 Generic Framework ... 14
2.6.1 Diagnostic Control.. 14
2.6.2 Diagnostic Logging & Reporting Assumptions.. 14
2.6.3 Localization .. 15

3 CDMV1 .. 16

3.1 Overview.. 16

3.2 Model Components... 17
3.2.1 The DiagnosticTest Class ... 17

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 5

3.2.2 The DiagnosticSetting Class... 17
3.2.3 The DiagnosticResult Class.. 18

3.3 CDMV1 Usage .. 19
3.3.1 Settings Protocol... 19
3.3.2 Looping... 20
3.3.3 Result Persistence ... 21
3.3.4 LogOptions for Typed Messages.. 21
3.3.5 Diagnostic Results .. 22

3.3.5.1 Monitoring Diagnostic Test Progress ... 22
3.3.5.2 Using Typed Messages in TestResults[].. 23

4 CDMV2 .. 24

4.1 Overview.. 25

4.2 Model Components... 25
4.2.1 Diagnostic Service.. 25
4.2.2 Diagnostic Jobs.. 26
4.2.3 Diagnostic Logs.. 27

4.2.3.1 DiagnosticRecord ... 28
4.2.4 HelpService .. 29

4.3 CDMV2 Usage .. 30
4.3.1 Diagnostic CIM Client Protocol ... 30

4.3.1.1 Query for Services .. 30
4.3.1.2 Configure the Service ... 30

4.3.1.2.1 Settings .. 30
4.3.1.2.2 Capabilities .. 30
4.3.1.2.3 Characteristics.. 31
4.3.1.2.4 Affected Resources .. 31
4.3.1.2.5 Dependencies ... 31

4.3.1.3 Execute the Service .. 31
4.3.1.3.1 Starting a Job ... 31

4.3.1.4 Monitor/Control the Service ... 32
4.3.1.5 Complete the Service.. 32

4.3.2 Correlation of Records.. 32
4.3.2.1 CDM Key Structure.. 34

4.3.2.1.1 ConcreteJob Keys .. 34
4.3.2.1.2 DiagnsoticRecord Keys ... 34

4.3.3 Using the Physical Model for FRU Identification .. 35

5 FUTURE DEVELOPMENT .. 36

5.1 CIM Indications.. 36

5.2 Interactive Testing.. 36

5.3 Diagnostics DTD/XSL .. 37

5.4 Services .. 37
5.4.1 Daemons ... 37
5.4.2 Exercisers ... 37
5.4.3 Executives... 37

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 6

5.5 Logging .. 37

5.6 Self Healing and Autonomic Healthcare .. 37

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 7

1 Introduction
The Common Diagnostic Model (CDM) is an architecture and methodology for
exposing system diagnostic instrumentation through standard CIM interfaces. The CDM
schema was introduced in CIM V2.3 as a simple set of classes representing tests, test
settings and results. Subsequently, a significant amount of implementation has taken
place and a number of opportunities for improvement have been identified in the original
model. In addition, CIM has matured, the schema has been extended, and some of these
changes are being applied to CDM to improve versatility and extendibility. A number of
major changes occurred as part of the V2.9 release and it is anticipated that phasing over
to the new schema will be completed with V3.0.

The CDM version introduced in V2.3 is now being referred to as CDMV1 to distinguish
it from new concepts introduced in V2.9. CDMV2 encompasses these concepts and will
be the only version supported in CIM V3.0.

Note: Most of the extensions made available in CIM V2.9 were actually
processed as Change Requests for V2.8. The entire group of changes for CDMV2
was not complete when V2.8 went Final, so all experimental classes were moved
into V2.9 Preliminary. This paper will reference V2.9 for all these changes.

The purpose of this paper is to describe the CDM schema as it appears in CIM V2.9,
distinguish between CDMV1 and CDMV2, and point out where future work is planned.
Guidance is provided, where appropriate, to client and provider implementers in order to
reinforce the standardization goal. Guidance to diagnostic test developers is not within
the scope of this paper and is being documented by the CDM Industry Group1.

1.1 Overview
Diagnostics is a term that has been used to describe a wide variety of problem
determination and prevention tools that include exercisers, excitation/response tests,
information gatherers, configuration tools, and predictive failure techniques. This paper
presupposes the most general interpretation of this terminology and addresses all forms of
diagnostic tools that would be utilized in OS-present and pre-boot environments. The
focus is on CDM, the enabling infrastructure.

The OS-present environment presents a formidable set of challenges to diagnostics
programmers. They must deal with a plethora of system status and information, neatly
hidden behind proprietary APIs and undocumented incantations; this situation is
remedied by CIM. They are also faced with OS barriers placed between user space and
the target of their efforts, making it difficult, often impossible, to manipulate the
hardware directly. The CDM focuses on easing this situation through a standardized
approach to diagnostics that utilizes the more sophisticated aspects of CIM – the ability to
manipulate manageable system components by invoking methods.

1 The CDM Industry Group is currently an ad hoc committee of industry CDM promoters that is developing
a set of CDM implementation guidelines. See http://www.intel.com/design/servers/CDM/index.htm.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 8

1.2 Goals

The goals of the Common Diagnostic Model are:

1. Manageability through Standardization

2. Interoperability

3. Diagnostic Effectiveness

4. Global Access

5. Life-cycle Applicability

1.2.1 Manageability through Standardization
Faced with the requirement to deliver diagnostic tools to their customers, chip and
adapter developers have had to deal with a variety of proprietary APIs, report formats,
and deployment scenarios. The CDM specifies a common methodology, with CIM at its
core, which will result in a “one size fits all” diagnostic package. Diagnostic
management applications will be able to obtain information about diagnostic services
available, configure and invoke diagnostics, monitor the diagnostics progress, control
diagnostic execution, and query CIM for information gathered by the diagnostic service.
If the CDM methodology is followed, these standard diagnostic packages can be
seamlessly incorporated into applications implemented as CIM clients. This relieves the
diagnostic programmer from the effort associated with satisfying multiple interfaces and
permits more time to be spent improving the effectiveness of the tools.

1.2.2 Interoperability
CIM is, by design, platform-neutral. There is no requirement that implementations of
CIM (clients, object managers, and providers) are platform-neutral, but this is the goal.
To the extent that CIM implementations promote interoperability, so will the CDM, and
this is a very important advantage. Diagnostic CIM clients and providers can be made
portable, not only between customers, but also across platforms and in heterogeneous
environments.

1.2.3 Diagnostic Effectiveness
Surrounding this infrastructure are the diagnostic tools themselves. Not only do they
become less difficult to deploy when developed to the CDM, but also there is a
significant potential for improving the effectiveness of the entire package. There are
several factors at play. Ease of deployment through standardization and interoperability
increases availability, thus expanding coverage. Tool developers have the entire WBEM
instrumentation database to draw upon in their problem determination and resolution
efforts. The CDM also goes beyond WBEM in recommending techniques to vendors that
lead to integration of diagnostics into device drivers, thus gaining access to the more
intimate details of the device being diagnosed.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 9

1.2.4 Global Access
WBEM provides a framework for managing system elements across distributed
environments, endowing the CDM with the potential for servicing systems without regard
to locale. The way is paved for very cost effective serviceability scenarios and major
warranty expense reduction.

1.2.5 Life-cycle Applicability
The CDM is designed to be applicable at all product life cycle stages from system
development and test to manufacturing, end user, service and warranty repair.

1.3 Who Should Read this Paper
This paper has been prepared to aid diagnostic client and provider developers to
understand the CIM components of the Common Diagnostic Model along with other
areas of the model that are leveraged to fulfill the requirements of a comprehensive
problem determination methodology for modern computer systems. It should be read and
understood by anyone planning to create CDM-compliant diagnostic tools.

This paper presupposes the availability and similar study of the CIM Version 2.9 schema,
represented by the MOF files. There is detailed information in these files that will not be
covered in its entirety in this paper.

This paper deals primarily with architecture. The CDM includes implementation
standards as well, in order to promote OEM/vendor interoperability and code reuse. In a
separate effort, industry promoters of this technology are preparing a CDM
Implementation Guide, which is released at Version 1.0 at the writing of this paper. It is
available at the link in Section 1.5. This document should also be read and understood,
since it addresses issues related to compliance. Tools are being developed to verify CDM
compliance and it is expected that procurement processes will include such testing.

1.4 CDM Versions
CDM Version 1.0 (CDMV1) was introduced in CIM V2.3. It is based upon a simple
settings/test/results model and has been enhanced in subsequent versions of the CIM
schema. The intent is to deprecate the model components peculiar to CDMV1 prior to the
introduction of CIM V3.0, at which time support for CDMV1 clients and providers will
be discontinued. This is being done with the realization that CDMV1 has not been widely
implemented, providing an opportunity to redefine CDM to be more versatile and
extensible, and to more completely leverage applicable CIM schema.

CDM Version 2.0 (CDMV2) was introduced with CIM V2.9. The settings/test/results
concept is still present, but modeled using services, jobs, and logs.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 10

1.5 Background Reference Material
1. Original white paper: A Diagnostic Model in CIM,

http://www.dmtf.org/educ/whit.html

2. CIM Tutorial, http://www.dmtf.org/spec/cim_tutorial/

3. CIM Schema at http://www.dmtf.org/standards/index.php

4. CDM Implementation Guide at
http://www.intel.com/design/servers/CDM/index.htm

1.6 Terminology

Term Definition

CDM Common Diagnostic Model

CDMV1 Version 1 of the CDM (based on CIM V2.3)

CDMV2 Version 2 of the CDM (based on CIM V2.9)

CIM Common Information Model

CIMOM CIM Object Manager

CR (CIM) Change Request

DBCS Double Byte Character Set

FRU Field Replaceable Unit

ME ManagedElement

MOF Managed Object Format

MSE ManagedSystemElement (the class or its children)

NLS National Language Support

RAS Reliability, Availability, and Serviceability

SAN Storage Area Network

UML Unified Modeling Language

WBEM Web Based Enterprise Management

XML Extensible Markup Language

1.7 Conventions Used in this Document
Classes and properties are written using capitalized words without spaces, as in
ManagedElement, versus “managed element” when referring to the generic form.

The Bold attribute is added for visual impact with no other implied meaning.

Methods include () for quick identification, as in RunTest().

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 11

Arrays include [] for identification, as in TestResults[].

A colon between class names is interpreted as “derived from” as in ConcreteJob : Job.

A “dot” between a class name and a property name is interpreted as “containing the
property” as in Capabilities.InstanceID (InstanceID is a property of the Capabilities
class.)

The prefix “CIM_” will often be omitted from class names for brevity and readability
reasons.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 12

2 Modeling Diagnostics
The diagnostic model extends the CIM schema to cover the management domain of
diagnostics. This includes diagnostic tests, executives, monitoring agents, and analysis
tools. The objective of diagnostic integration into CIM is to provide a framework where
industry standard building blocks that contribute to the ability to diagnose and
prognosticate the system’s health can be seamlessly integrated into enterprise
management applications and policies. This chapter discusses the modeling concepts that
are relevant to implementing diagnostics with CIM.

2.1 Consumer - Provider Protocol
A CIM diagnostic solution has two components: diagnostic consumers (or diagnostic
CIM clients) and diagnostic providers. Diagnostic providers register the classes,
properties, methods, and indications they support with the CIM object manager. When a
management client queries CIM for diagnostics supported on a given managed element,
CIM returns the instances of the diagnostic services associated with that managed
element. This establishes communication between the discovered diagnostic providers
and the managing client. The management client can now query CIM for properties,
enable indications, or execute methods according to the WBEM standard and the
diagnostic protocol conventions described in this document. The conventions that
diagnostic consumers and providers must follow include naming of keys, consistent
manipulation of properties, adherence to life cycle attributes of objects, and
synchronization of object references.

2.2 Implementation Neutral Modeling
The diagnostic model is implementation neutral. It does not make any assumptions on
any of the following provider implementation approaches:

• Whether the provider is re-entrant or for exclusive use.

• Whether the provider is implemented in-process and blocks until the method
requested completes, or is implemented out-of-process so that more than one
method can be executed at a time by the same provider.

• Whether the provider is implemented as an “always resident” service or it
loads a separate instance for each request and unloads when complete.

• Whether a provider reuses objects, or creates and destroys them for each use.

• Whether more than one provider is used to implement the diagnostic service.

• Whether or not the diagnostic provider supports indications.

2.3 Backward Compatibility
The CIM V2.9 diagnostic model (aka CDMV2) does create some parallel semantics to
the CDMV1, and also extends the model to provide additional semantics. In order to
make these extensions cleanly, some parts of the diagnostic model were deprecated in

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 13

favor of more scalable approaches. These deprecations will continue to be supported in
the CIM schema until Version 3.0. Provider developers should implement to the new
V2.9 semantics, avoiding any use of the deprecations. Clients, however, may need to
support both the CDMV1 and CDMV2 semantics for backward compatibility, until the
transition to V3.0 is complete.

2.4 Diagnostics are Services
Diagnostics are more than just test applications. Diagnostics create controlled stimuli
and monitor, gather, record and analyze information about detected faults, state, status,
performance, and configuration. This diverse nature of diagnostics best lends itself to
being modeled as a service that launches or enables the components necessary to
implement the diagnostic actions requested by the client.

These diagnostic components may be implemented as test applications, monitoring
daemons, enablers for built-in diagnostic capabilities, or proxies to some other
instrumentation that is implemented outside of WBEM.

2.5 Diagnostics are Applied to Managed Elements
Diagnostics are applied to Managed Elements. By “applied”, we mean that a test checks a
managed element, a diagnostic daemon monitors a managed element, diagnostic
instrumentation is built into the managed element, etc. One of the goals of CIM-based
diagnostics is the packaging of diagnostics along with the vendor’s deliverable or Field
Replaceable Unit (FRU). Thus diagnostics are often applied at that FRU level of
granularity.

Diagnostics Services are commonly applied to:

• Logical Devices: Most vendor-supplied diagnostics are for add-on peripherals
such as adapters and storage media, which fall into the logical device category. In
this case there is clear correspondence between the diagnostic’s scope and a CIM
defined logical device class.

• Collections: Some vendors may choose to apply diagnostics to a collection that
represents the aggregated functionality of a managed element. This is supported
in CIM by CIM_Collection, which describes an aggregation of managed
elements. Since CIM_Collection is a managed element it can be associated to a
diagnostic service.

• Systems: Not all diagnostic use cases have coverage that corresponds to logical
devices or simple collections of distinguishable CIM-modeled devices. Some
diagnostic services are often best applied to a system as a single functional unit or
as a collection of miscellaneous devices that are scoped to it as a FRU. Some
examples are:

1. System stress tests and monitors which measure aggregate system health.

2. Miscellaneous, non-modeled, or baseboard devices that are often best
viewed as part of a system level FRU.

Comment [JS1]: Needs to more
closely align with the CIM definition of a
system.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 14

3. Controllers that are part of an internal system bus structure may not be
independently diagnosable and must be tested by proxy through another
logical device. In this case the controller is an embedded,
indistinguishable component that contributes to the overall system health.

• Other Services: Diagnostic services may also be applied to other non-diagnostic
services. These diagnostics may be used to insure the reliability of the associated
service.

2.6 Generic Framework
Diagnostic services should share the semantics of the model regardless of whether the
service launches tests, starts a monitoring agent, or enables instrumentation. They should
share the same mechanisms for publishing, method execution, parameter passing,
message logging, and reporting FRU information.

The diagnostics model also leverages other areas of the CIM model to provide extended
diagnostic capabilities rather then introducing diagnostic centric mechanisms. Examples
are the “jobs” model for monitoring, the “log” model for capturing information, and
effective utilization of the logical and physical models.

2.6.1 Diagnostic Control
Diagnostic clients may need to control and monitor the status and progress of the
diagnostics elements launched by the service provider to implement a service request.
This control and monitoring capability is achieved in a generic manner utilizing the CIM
job and process model. The elements launched by the diagnostic service can be
collectively controlled and monitored through an instance of ConcreteJob returned by the
diagnostics start method in the diagnostic service. In CIM V2.9, diagnostics leverages
this portion of the CIM System model as is, without any diagnostic-specific sub-classing.

2.6.2 Diagnostic Logging & Reporting Assumptions
Diagnostics require the ability to record information about detected faults, state, status,
performance, and configuration of both the diagnostic components launched and the
relevant managed elements. This information may be gathered dynamically at
checkpoints while the diagnostic service is active for concurrent analysis or after the
service is complete for post mortem analysis. In CIM V2.9, diagnostics utilize a log to
record the information that diagnostic service applications, agents, and instrumentation
deem relevant.

In the future, the diagnostic model will link up with planned service models that
standardize error codes, indications and trouble tickets in order to integrate CDM
diagnostics into WBEM-based industry standard diagnostic policies and RAS use cases.
See the DMTF Support WG and CompTIA initiatives for further information.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 15

2.6.3 Localization
Localization refers to the support of various geographical, political, or cultural region
preferences, or locales. A client may be in a different country from the system it is
querying and would prefer to be able to communicate with the system using its own
locale. There are inherent differences to be reckoned with, such as language, phraseology,
currency, and many cultural oddities.

There is no localization support in CIM prior to Version 2.9. Since diagnostics relies on
precise reporting of system status and problem data in a user-centric environment,
localization is critical. In V2.9, we introduced schema extensions to allow a client to
query a diagnostic service for supported locales and to specify the desired locale via a
DiagnosticSetting object. The change was written as generically as possible, specifically
supporting diagnostics with the intent that it be generalized for broader use in the future.

A new class, CIM_LocalizationCapabilities : CIM_Capabilities was introduced with
properties publishing the supported input and output locals. A Locales[] property is added
to the DiagnosticSetting class (for passing to the service) and the
DiagnosticServiceRecord class (for local identification of the resultant logs).

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 16

3 CDMV1
The DiagnosticTest, DiagnosticSetting, and DiagnosticResult classes have been the core
of the diagnostic model since CIM V2.3. This section describes this original CDM
model, which will be supported until CIM V3.0, along with the minor enhancements
made to it in subsequent versions of the CIM schema. The following UML diagram
shows the properties and methods relevant to CDM diagnostic clients and providers in
CDMV1.

The CDMV1 Diagnostics Model:

Service

(See Core Model)

1

(See Core Model)

LogicalElement

Dependency

*

ManagedSystemElement

(See Core Model)

*
(See Core Model)

ManagedElement

DiagnosticTest

Characteristics: uint16[]
OtherCharacteristicDescription : string
IsInUse : boolean
ResourcesUsed: uint16[]

RunTest([IN] SystemElement: ref ManagedSystemElement,
 [IN] Setting: ref DiagnosticSetting, [OUT] Result: ref DiagnosticSetting)
 :uint32
ClearResults([IN]SystemElement: ref ManagedSystemElement,
 [OUT] ResultsNotCleared: string[]) : uint32
DiscontinueTest([IN] SystemElement: ref ManagedSystemElement,
 [IN] DiagnosticResult ref DiagnosticResult,
 [OUT] TestingStopped : boolean) : uint32

Setting

(See Core Model)

DiagnosticSetting

SettingID: string [key]
TestWarningLevel:uint16
ReportSoftErrors: boolean
ReportStatusMessages: boolean
HaltOnError: boolean
QuickMode: boolean
PercentOfTestCoverage: uint8

DiagnosticResult

ExecutionID: string [Key]
TimeStamp: datetime
IsPackage: boolean
TestStartTime: datetime
TestCompletionTime: datetime
TestState: uint16
OtherStateDescription: string
EstimatedTimeOfPerforming : uint32
TestResults: string[]
PercentComplete: uint8
TestWarningLevel : uint16
ReportSoftErrors : boolean
ReportStatusMessages : boolean
HaltOnError: boolean
QuickMode: boolean
PercentOfTestCoverage: uint8

DiagnosticResultForMSE

*

*

DiagnosticResultForTest

w 1

DiagnosticTestForMSE

*

*

DiagnosticTestInPackage

*

*

DiagnosticResultInPackage

*

*

SoftwareElement

(See Application Model)

DiagnosticTestSoftware

*

*

DiagnosticSettingForTest

*

*

3.1 Overview
Although some new features have been added in updates to the CIM schema, the
behavior of CDMV1 remains largely unchanged from its introduction in CIM V2.3.
Diagnostic tests have DiagnosticSettings passed in, which act like parameters; tests
produce a DiagnosticResult, which is a summary report of the test session. The

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 17

semantics around these classes have not changed. They have, however, been enhanced
with new features as well as some minor changes in order to support integration with the
Job model (CDMV2). These changes are included in the descriptions below.

3.2 Model Components

3.2.1 The DiagnosticTest Class
DiagnosticTest is the only diagnostic service class supported in CDMV1. All diagnostic
services must be developed in the context of a test. There are several deprecations noted
in the following paragraphs. It is important to realize that these deprecated features will
continue to be supported until CIM V3.0. They are part of the CDMV1 model.

The properties included in the DiagnosticTest class are designed to be used by a
diagnostic client to determine the general effects that are associated with running the test.
For example, if a test is going to destroy data or monopolize a resource, the client needs
to be aware of this and inform the user or make adjustments to the environment.

The IsInUse and ResourcesUsed properties are deprecated in V2.9 since there are more
general ways to expose this information. CIM_Service.Started indicates that the service
“is in use” and the ServiceAffectsElement association is the preferred way to surface the
resources consumed by the service.

The methods defined for the test class are included to start the test running, stop it prior to
normal completion, and clear any stored results that are no longer needed. The RunTest
and DiscontinueTest methods are deprecated in V2.9; RunTest is promoted to the new
DiagnosticService class (renamed RunDiagnostic) and the DiscontinueTest functionality
is achieved using the EnabledLogicalElement.RequestedStatus property.

Even though DiagnosticTest can be directly instantiated, users of the model should
subclass and prefix the class name with a unique identifier, including a vendor ID, for
example: IBMSG_, for IBM Server Group.

If input parameters are necessary, a DiagnosticSetting instance is created and passed to
the test. Results produced by a test are recorded in an instance of the DiagnosticResult
class and linked to the test by an instance of DiagnosticResultForTest.

DiagnosticTestInPackage was originally introduced to allow modeling of packages
(suites) of tests. This concept introduced so many modeling problems that it was quickly
abandoned and left up to the test writer to implement if required. This association class is
deprecated in V2.7.

3.2.2 The DiagnosticSetting Class
DiagnosticSetting is derived from CIM_Setting and is used to contain the default and
run-specific settings for a given test. Diagnostic service providers publish default
settings in an instance of this class (associated to the service by an instance of
DefaultSetting) and diagnostic clients are expected to create a new instance and populate
it with these defaults with, possibly, user modifications. This new setting object is then
passed as an input parameter to RunTest(). For all properties except SettingID,

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 18

LoopParameter, and the deprecated ReportSoftErrors and ReportStatusMessages, the
values set by a test client in a DiagnosticSetting object are "qualified" by corresponding
properties in DiagnosticServiceCapabilities. If the capabilities do not include support for
a setting, then the client must maintain the default for that setting. Any attempt to modify
it will not be recognized by the test.

V2.7 added loop controls in the setting class. With this addition, it is possible to loop a
test (if supported) under control of a counter, timer, and other loop terminating facilities.

V2.9 also added support for specification of the nature of data being logged by the test
through the addition of the LogOptions enumeration. This eliminates the need for some
settings that were part of the initial diagnostics model, so these properties are deprecated.

3.2.3 The DiagnosticResult Class
The DiagnosticResult class is used to monitor test progress and receive result data from a
specific test instance. When a client executes the RunTest method, a reference to an
instance of the result class is returned. If the test finishes very quickly or if it must run
synchronously, the result object is not useful for test progress monitoring (through the
PercentComplete property). However, if the test is capable of running asynchronously
(on its own thread) and publishes its progress, the client can poll this property and relay a
progress indication to the user. In addition to PercentComplete, the TestState property
can give some progress indication. If TestState is set to any of the completed states
("Passed", "Failed" or "Stopped"), a PercentComplete value less than 100% might
indicate an abnormal termination, or some setting that shortened or truncated the test
(e.g., HaltOnError). In any case, after the test is complete, the client can read the
TestResults property and format the outcome of the test for the user.

Note: Since it is useful to have a record of the settings that produced a particular
result, the DiagnosticSetting property values that were passed to RunTest() are
copied to the result object when it is created.

The ExecutionID key property is used to distinguish between multiple executions of a
test on the same managed element. The CDMV2 model recommends that this property be
constructed as shown in section Error! Reference source not found., but CDMV1 was
introduced without this recommendation and may be implemented as simply an index
(i.e., 0,1,2…).

EstimatedTimeOfPerforming is the estimated number of seconds that should be needed to
perform the diagnostic test associated with this result. After the test has completed, the
actual elapsed time can be determined by subtracting the TestStartTime from the
TestCompletionTime.

Note: A similar property is defined in the association, DiagnosticTestForMSE. The
difference between the two properties is that the value stored in the association is a
generic test execution time for the Element and the Test. The value in
DiagnosticResult is the estimated time that this instance with the given settings would
take to run the test. A CIM consumer can compare this value with the value in the
association DiagnosticTestForMSE to get an idea what impact their settings have had

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 19

on test execution. To get an estimate of time remaining to complete the test, a client
could add this value to the start time, and then subtract the current time.

In V2.7, properties were added to record error codes and number of times that code was
generated. These error codes may be used for variety of purposes, such as: fault database
indexing, field service trouble ticketing, product quality tracking, part failure history, etc.
The format of these codes is vendor-specific. It is recommended that hard errors and
correctable or recoverable errors be given different codes so that clients with knowledge
of the error codes can evaluate correctable, recoverable, and hard errors independently.

Also in V2.7, the addition of looping controls led to the need to count the number of loop
iterations that passed and failed. This is relevant in analyzing transitory failures. For
example, if all the errors occurred in just one of 100 iterations, the device may be viewed
as OK or marginal, to be monitored further rather than failed.

3.3 CDMV1 Usage
The following descriptions have references to model components that were added for
CDMV2 but can also be viewed as CDMV1 extensions. These extensions may lead to
some confusion in that they were added over a period covering multiple CIM Versions,
and early implementations may not have applied theses scenarios since the model wasn’t
complete. All the reference components appear finally in CIM Version 2.9.

3.3.1 Settings Protocol
To control the operation of a diagnostic service, a CDM provider must satisfy a number
of requirements for supporting the diagnostics schema. For each test, the provider
publishes a single instance of DiagnosticCapabilties (CIM V2.9) to indicate what features
are selectable in a DiagnosticsSetting object. It should provide default settings for the
service in an instance of DiagnosticSetting and link the default settings object to the
diagnostic service object using the DefaultSetting association. Additionally, a
DiagnosticSettingForTest association may be created between this object and the
DiagnosticTest object to which the default applies.

Note: DiagnosticSettingForTest is not needed if the recommended implementation is
followed. The diagnostic CIM client should create a new instance of
DiagnosticSetting that combines the default property values with user input; this is
the Setting object passed to the RunTest method. DiagnosticSettingForTest is
deprecated in CIM V2.9.

Any CDM client can query the CIMOM for DiagnosticTest instances. After selecting a
test to run, the client should check for its default settings and capabilities by querying for
the DefaultSetting and ElementCapabilities association instances, and filtering for the
instance that references the selected test. The client creates an instance of
DiagnosticSetting and populates it with the default settings along with any modifications
made by the user, taking into account the published capabilities for that test.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 20

Either the preferred RunDiagnostic() method in DiagnosticService (added in V2.9), or
the deprecated RunTest() method in DiagnosticTest can be used to start a diagnostic test.
In either case, a reference to the newly created instance of DiagnosticSetting is passed in
as a parameter to the method call. If a setting reference is not passed in, then the CDM
provider should use the default setting values.

The diagnostic model utilizes settings to specify parameters standard to all CIM
diagnostic services. The diagnostic setting model does not utilize any of the methods
defined in the Setting class. Instead, as noted here, the diagnostic model passes test
settings to the diagnostic service as a parameter to the run method.

When a test's RunTest() method is called, the test provider creates an instance of
DiagnosticResult. The provider then copies each of the properties in the
DiagnosticSetting instance into the DiagnosticResult object. This preserves a record of
the settings used for that test execution. When the test has started, a reference to the
DiagnosticResult is returned to the client. The client may then use it to check on test
progress (PercentComplete, TestState), as well as on the actual results in TestResults[].

3.3.2 Looping
Initially, there was no test looping capability included in the model. Looping was left to
the client to repeatedly execute the RunTest method. CIM V2.7 adds properties to
DiagnosticSetting to allow specification of looping parameters to a diagnostic provider.
These properties are actually arrays of controls that may be used alone or in combination
to achieve the desired iteration effect.

The LoopControlParameter property is an array of strings that provide parameter values
to the control mechanisms specified in LoopControl. This property has a positional
correspondence to the LoopControl array property. Each string value is interpreted based
on its corresponding control mechanism. There are four different types of controls
specified in CIM V2.7:

• Loop continuously

• Loop for N iterations

• Loop for N seconds

• Loop until greater than N hard errors occur

For example, if a client wants to run a test 10,000 times or for 30 minutes, whichever
comes first, it could set both count and timer controls into the LoopControl array and
would achieve the logical OR'ing of these controls. In another example, if one wants to
run a test 1000 times or until 5 hard errors occur, then there are two elements set in this
array, one of 'Count' and one of 'ErrorCount'. In the LoopControlParameter array there
would be "1000" in the first element and "4" in the second element.

If the LoopControl array is empty, then no looping will take place. Also, if one element
is 'Continuous' then no other array elements will have any effect and it is the client that
must determine when to stop the test.

In the case of a looped diagnostic, the result that is persisted should contain a summary,
and not necessarily a report of each iteration result (depending on LogOptions selected).

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 21

Here is an example of what a client might expect to see for diagnostic result information,
per result type:

Single Iteration Result “Test <test name> [passed | failed with error %s].”
Looping Summary Result “Test <test name> ran <N> times: passes = <j>;

failures = <k>.”

3.3.3 Result Persistence
Each time a diagnostic test is launched, an instance of DiagnosticResult is created.
Originally, CDM placed no policy or control over result object persistence; it was pretty
much left as an implementation detail. There are situations (e.g., abnormal termination)
that could lead to an accumulation of old, unneeded results. The potential for this type of
problem is exacerbated by the introduction of looping.

In general, diagnostic clients should implement a persistence policy and handle storage of
results as needed. Providers should be required to persist results only long enough for
clients to secure them. This time can vary, however, depending on the environment in
which the testing is being performed and unexpected events that may occur. A new
setting property in CIM V2.7 allows a diagnostic client to specify how long
DiagnosticResults must be persisted by the provider after the running of a
DiagnosticTest. This ResultPersistence property is now part of the DiagnosticSetting and
DiagnosticResult classes. For each running of a diagnostic test, the client may now
specify whether and how long a provider must persist the results of running the test, after
the test's completion. In typical use, a client makes one of the following choices:

1. Do not persist results (ResultPersistence = 0x0): The client is not interested in the
results or is able to capture the results prior to completion of the test. The provider
has no responsibility to maintain any related result objects after test completion.

2. Persist results for some number of seconds (ResultPersistence = <non-zero>): The
client needs the results persisted for the specified number of seconds, after which
the provider may delete them. The client may delete the results prior to the
timeout value being reached.

3. Persist results forever (ResultPersistence = 0xFFFFFFFF): A maximum timeout
value will prohibit the provider from ever deleting the referenced result. It is the
client's responsibility then to delete them when/if desired.

Note: There is no default timeout value for this property. It has been suggested
however, that a five-minute (300 second) timeout, for example, would allow a client
enough time to reconnect and query for results if it were accidentally disconnected
from a session.

3.3.4 LogOptions for Typed Messages
In CIM V2.3, it was possible for a client to instruct a test provider to enable or disable
only two types of result messages destined for the DiagnosticResult.TestResults[]

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 22

property: soft errors and status messages. This mechanism allowed a client rudimentary
control over the amount and type of information returned from a test session.

In CIM V2.9, two improvements increase the client’s ability to analyze and control the
information returned from test providers. One is the extension of typed messages to
specify more type classifications and to include the type in the message header (for
analysis). The other is the LogOptions property in DiagnosticSetting that gives a client
gating control per message type.

The list of supported message types in includes: test ("hard") errors, soft errors, status,
warnings, FRU (e.g. the "Device Under Test") information, debug messages, statistics,
corrective actions to be taken, configuration, subtest reports, and reference information.
For specific information on each log option and additions to the list, see the MOF file.

The CDM provider indicates that it supports various types of messages by setting values
in the DiagnosticServiceCapabilities.SupportedLogOptions array. A client then selects
what messages it wants captured by listing those types in the LogOptions parameters of
the DiagnosticSetting class. The log options are independent and may be used in
combinations to achieve the desired report. The default behavior is for an option to be
off/disabled.

3.3.5 Diagnostic Results
In CDMV1, DiagnosticResults are used for two purposes: monitoring test execution
status and recording test results.

3.3.5.1 Monitoring Diagnostic Test Progress
In CDMV1, tests log information to DiagnosticResult.TestResults[]. The client can
monitor diagnostic test information, both dynamically and upon test completion by
periodically polling the DiagnosticResult class and looking at this property to see the
messages coming from the test. This approach has led to an implementation requirement
that the diagnostic provider must create a unique instance of the diagnostic result class
and return a reference to that instance to the client. This permits the client to query it
while the diagnostic test is running.

The following example illustrates how clients can effectively monitor test status and
progress:

• The CDM provider first creates a diagnostic result object before starting its
diagnostic test. All key properties are filled out, and the settings that will be
applied to the test are copied into this result object.

• The CDM provider also creates the associations DiagnosticResultForMSE and
DiagnosticResultForTest so that the client can identify the results that are related
to a particular test running on a particular device.

• The provider sets the property TestState to InProgress and sets the current date
and time into the TestStartTime property just prior to calling the test.

• For tests that run more than a few seconds, an internal communication mechanism
between the test and the provider should be established so that the provider can

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 23

update the PercentComplete and the TestResults properties while the test is
running. The client can then monitor the test progress.

• After the test completes, the provider sets the TestCompletionTime property to
the current date and time and finishes filling out the TestResults[] array with
messages and a results summary. Finally, it sets the TestState property to the
appropriate value: “Passed”, “Failed”, or “Stopped”.

3.3.5.2 Using Typed Messages in TestResults[]
The CIM V2.3 System MOF specifies that each string entry in TestResults array in the
DiagnosticResult class should be prefixed with a “message header”. In CIM V2.9, the
description of the TestResults array is modified to specify that the message type must be
prefixed to each message header. This allows results to be sorted and searched by
message type. The message type naming convention corresponds to the value of the
LogOption that enables logging the particular message. The CDMV1 message header has
the following format:

 LogOption|DateTime|TestName|TestMessage

Where:

• The delimiter, “|”, is used to separate each part of this header.

• LogOption = string identical to the LogOption value in DiagnosticSetting that was
used to enable logging this message.

• DateTime = the time stamp for the message (CIM data type).

• TestName = Internal test name or current internal subtest name that sent the
message.

• TestMessage = free form string that is the “test result”.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 24

4 CDMV2
Version 1 of the CDM provides a very simple structure for discovery of diagnostic tests,
running and monitoring them, and reporting results. Unfortunately, this simplicity
introduced limitations by not utilizing the functionality built into other areas of the
model. Version 2 of the CDM (CDMV2) introduces a more robust model for diagnostic
tools. While CDMV1 was based on a simple settings/tests/results model, CDMV2
supports a more flexible and extendable model based on settings/services/jobs/logs. This
will be discussed in the following sections.

The Visio diagram below represents the model components unique to CDM. Other
components (e.g., ConcreteJob, Log) can be found by searching the online
(www.dmtf.org) documentation.

This document corresponds to CIM V2.9. Always refer to the latest online Visio
diagrams and MOF files for the most current version of the model.

The CDMV2 Diagnostics Model:

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 25

4.1 Overview
The CDMV2 schema can be partitioned into several major conceptual areas:

• Settings are enhanced and extended with capabilities.

• Diagnostic Services allow extending beyond DiagnosticTest.

• Jobs provide control and monitoring of the diagnostic services launched. (The
ConcreteJob class is not shown in the above Visio diagram since there are no
diagnostics-specific subclasses. See the System Model schema for ConcreteJob.)

• Logs replace DiagnosticResults as the mechanism for recording information
gathered by the DiagnosticService. (The Log class is not shown on the diagram
since there are no diagnostics-specific subclasses. Diagnostics will use an
aggregation of records to record results.)

4.2 Model Components

4.2.1 Diagnostic Service
The CIM_DiagnosticService class was introduced in V2.9 to accommodate the
anticipated extension of the diagnostic model to include additional diagnostic service
types. It is felt that there are diagnostic services distinct in their intent and requirements
and they should be represented by unique subclasses. CDMV2 currently defines only one
subclass of DiagnosticService, DiagnosticTest; other subclasses that have been discussed
are exercisers, informational, monitors, and out-of-band test executives. A ServiceType
property will likely be introduced when any of these new services are added.

The diagnostic service is associated with the managed element that it tests, monitors, or
exercises using the AvailableDiagnosticService : ServiceAvailableToElement class. The
managed elements most often targeted by diagnostics services are logical elements such
as adapters, storage media and systems, which are realized by the physical model. The
physical model contains asset information about these devices and aggregates them into
FRUs.

A primary function of the diagnostic service is to publish information about device(s) it
services and the effects that running the service has on the rest of the system.

The diagnostic service publishes the following:

• Name & Description of the diagnostic service instance

• Characteristics unique to the diagnostic service type

• Diagnostic capabilities implemented by the diagnostic service

• Default settings that the diagnostic service applies

• Effects on other managed elements

The diagnostic service also provides a method for launching the diagnostic processes that
implement the service. The RunDiagnostic() method starts a diagnostic service for the

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 26

specified ManagedElement (defined using the “ManagedElement” input parameter). How
the test should execute, i.e. its settings, is defined in a DiagnosticSetting object. A
reference to a setting object is specified using the “DiagSetting” input parameter. The
capabilities for the diagnostic service will indicate what settings and other options are
supported.

The ServiceAffectsElement class (not shown) represents an association between a service
and the managed element(s) that may be affected by its execution. Making this
association gives an indication that running the service will pose some burden on the
managed element that may affect performance, throughput, availability, etc. This
association contains an enumeration, ElementEffects, describing the 'effect' of the service
on its associated managed element. The defined values are: "Exclusive Use",
"Performance Impact", and "Element Integrity”, replacing the functionality of the
DiagnosticTest.ResourcesUsed[] property, deprecated in CIM V2.7.

ServiceServiceDependency (not shown) is an association between two services,
indicating that the antecedent service is required to be present, required to have
completed, or must be absent for the dependent Service to provide its functionality. As an
example, one could “order” testing using this association. The actual dependency is
published through the TypeOfDependency property specifying "Service Must Have
Completed", "Service Must Be Started", or "Service Must Not Be Started".

DiagnosticServiceCapabilities describes the abilities, limitations and/or potential for use
of various service parameters and features implemented by the diagnostic service
provider.

4.2.2 Diagnostic Jobs
ConcreteJob : Job, introduced in CIM V2.7, provides the properties and methods needed
for controlling a diagnostic component (e.g., test application) that was launched by the
diagnostic service. It also includes most of the monitoring properties relevant to
diagnostics such as percent complete, error code, and job status.

CDM’s use of the ConcreteJob class produces implementations that separate the service
monitoring and control functions from the results logging and service publication classes.
ConcreteJobs are transient (only exist while the service is running) and contain the
controls formerly distributed across unrelated classes.

The DiagnosticService.RunDiagnostic() method starts a diagnostic job. This method is
invoked with the managed element and settings references as parameters and returns a
reference to the instance of ConcreteJob, created to monitor the service.

The ConcreteJob class represents the currently executing service. It is associated with the
DiagnosticService that created it via the OwningJobElement association. ConcreteJob
contains the following functionality:

1. Job state can be queried.

2. Jobs can be suspended and resumed by invoking the RequestStateChange method
of the ConcreteJob class (added in V2.8).

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 27

3. Jobs can be associated with specific MEs using the AffectedJobElement
association. Within this association is the ElementEffects property. A diagnostic
service, when represented by a job, can indicate it is affecting multiple MEs, and
indicate the nature of that effect.

The ManagedSystemElement.OperationalStatus[] property indicates the current status of
the job. Values are generally used in combinations to reveal diagnostic services status.

• OK – Job is running.

• Stopped/OK – Job is suspended.

• Stopped/Completed/OK – Job is complete and operation passed.

• Stopped/Completed/Error – Job is complete and operation failed.

• Stopped/Completed/Degraded – Job “died”.

• Aborted – Job stopped by a KillJob method call.

• Supporting Entity in Error – the Job may be "OK" but another element, on which
it is dependent, is in error. An example is a network service or endpoint that
cannot function due to lower layer networking problems.

4.2.3 Diagnostic Logs
The ultimate goal of a running a diagnostic service is to collect information about the
health of a managed element. Clients need to specify how this information is to be
recorded in order to be useful in the problem determination process. Logged information
may be analyzed by a client dynamically for fault containment and system recovery
purposes, but in many situations the information is gathered for post mortem analysis in
message logs for use by field service technicians or quality assurance personnel.
Examples of the relevant information include:

• Fault Analysis: Diagnostic error codes, error frequency, warnings, test time,
resource allocation, and percent completion may all be relevant when analyzing
failures.

• Tracking FRU Health: Diagnostics can query the system to acquire FRU
information relevant to diagnostics such as health history, replacement
information, and fault signatures.

• Reproducing Failures. Diagnostics can query the system to get configuration
and state information from the managed elements to which they are applied, from
those elements that are impacted by the diagnostic, and from elements that impact
the diagnostic itself.

Introduced as a superclass to MessageLog in V2.9, CIM_Log is derived from
EnabledLogicalElement and associated to ManagedSystemElement through the
UseOfLog association. It has other associations to various storage/file classes and to the
LogRecord class.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 28

CIM_MessageLog (now a child of CIM_Log) was designed to double as a container for
freeform records with methods for managing them, and an aggregation point for
LogRecord objects. It seemed more object-oriented to have separate classes for these two
log mechanisms, so RecordLog was introduced as a peer of MessageLog. RecordLog is
strictly an aggregation point, having no extrinsic methods. This class fits the diagnostics
model in a more efficient manner, as will be seen.

An empty subclass of RecordLog, DiagnosticsLog, was added in order to allow the
development of a consolidated record management methodology for diagnostics. A
common set of providers for this log and its associated records SHOULD be used to
control functions such as record persistence, query support and overall data integrity in a
consistent manner.

4.2.3.1 DiagnosticRecord
The CIM_LogRecord : CIM_ManagedElement class can describe the format of entries in
a MessageLog, or can be used to instantiate the actual records in the log. The latter
approach provides a great deal more semantic definition and management control over
the individual entries in a log, than do the record manipulation methods of the
MessageLog class. RecordFormat and RecordData were added to LogRecord in V2.9 to
simplify data representation.

CIM V2.9 subclassed LogRecord with DiagnosticRecord and two children
(DiagnosticServiceRecord and DiagnosticSettingRecord) in order to add some properties
unique to diagnostic services and to segregate the Settings (stored in the DiagnosticResult
object in CDMV1).

DiagnosticRecord contains the following properties:

1. ServiceName is a required string property that is used to identify which service
created the record. In order to insure that ServiceName is unique, it should be set
to the value of the Name property of the DiagnosticService that caused the record
to be created.

2. ManagedElementName is a required string property is be used to identify which
Managed Element is related to the record. In order to insure that
ManagedElementName is unique, it should be set to the value of the
ElementName property of the ManagedElement that caused the record to be
created.

3. RecordID is overridden to specify how the value should be constructed for
diagnostic logs. It is a unique identifier representing a single execution of a
diagnostic service on an instance of a managed element. Its value should have
source correspondence (constructed identically) with the ConcreteJob.InstanceID
value (and an index) so that any client knowledgeable of the InstanceID value can
data mine a log after all the diagnostic applications and the diagnostic Job objects
have expired. Note that, since the ConcreteJob.InstanceID must be globally
unique, the diagnostic session’s RecordID will also be globally unique if this
recommendation is followed. See Section 4.3.2.1.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 29

4. ExpirationDate is the datetime when this record should be deleted by the log
provider. It is calculated using the ResultPersistence setting property. If a
ResultPersistence value is not provided, the ExpirationDate should be set to the
current datetime. Once the date has expired, the instance should be deleted as
soon as possible.

5. RecordType specifies the nature of the data being entered into the
DiagnosticServiceRecord. The value in this property should match one of the
values indicated in the DiagnosticSetting.LogOptions property that enabled the
diagnostics to log messages of the corresponding type (note the
ModelCorrespondence).

6. Locale specifies the language used in creating the log data.

DiagnosticServiceRecord contains some additional properties relating to error codes and
looping.

DiagnosticSettingRecord is used to capture the settings that were used in running the
service (as in CDMV1, DiagnosticResult).

4.2.4 HelpService
HelpService was added in V2.8 fill a need for diagnostic on-line help. It was added to the
schema in a manner that is readily useful to other parts of the model - a child of
CIM_Service. HelpService has properties that describe the nature of the help documents
available and a method to request the desired documents. Diagnostic services may
publish any form of help they desire, but some implementation recommendations are
being developed by the CDM Industry Group2.

CIM_ServiceAvailableToElement should be used to associate the diagnostic service to its
help information.

2 The CDM Industry Group is currently an ad hoc committee of industry CDM promoters that is developing
a set of CDM implementation guidelines. See http://www.intel.com/design/servers/CDM/index.htm.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 30

4.3 CDMV2 Usage

4.3.1 Diagnostic CIM Client Protocol
This section describes the process by which a diagnostic CIM client can configure,
initiate, monitor, control and complete a diagnostic service.

4.3.1.1 Query for Services
Clients query the CIMOM for the diagnostic services associated with the managed
elements of interest that are scoped to the hosting system. This system scope could be a
computer system, unitary device, or represent a network of remotely controlled systems.

Since services and managed elements are related through an association, the client may
start its instance query with:

1. the service, traversing the association to find the managed element,

2. the association, then retrieving the antecedent and dependent classes, or

3. the managed element, traversing the association back to the service.

4.3.1.2 Configure the Service
Once the applicable services are enumerated, the client should then discover the
configuration parameters for each service. (This can be done for all services up front or
individually when a service is actually invoked.)

4.3.1.2.1 Settings
Settings are the runtime parameters that apply to diagnostic services, defined in the
DiagnosticSetting : Setting class. Diagnostic services may or may not support all the
settings properties, and this support is published using Capabilities (see below).

A diagnostic service should publish its default settings with an instance of
DiagnosticSetting, associated by an instance of DefaultSetting. Clients combine these
defaults with user modifications (if supported in Capabilities) into a new instance of
DiagnosticSetting to be used as an input parameter when invoking the RunDiagnostic()
method. Passing a null reference will instruct the service to use its default settings.

4.3.1.2.2 Capabilities
Capabilities are described as “abilities and/or potential for use” and, for the diagnostic
model, are defined by the DiagnosticServiceCapabilities class. Capabilities are the means
by which a service publishes its level of support for key components of the diagnostic
model. CIM clients use capabilities to filter settings and execution controls that are made
available to users. For example, if a service does not publish a capability for the setting
“Quick Mode”, the client application might “gray out” this option to the user.

Clients use the ElementCapabilites association to obtain instances of
DiagnosticServiceCapabilities.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 31

4.3.1.2.3 Characteristics
Characteristics[] is a property of the DiagnosticTest class which publishes certain
information on the inherent nature of the test to the client. It is a statement of the
operational modes and potential consequences of running the service. For example,
“IsDestructive” indicates that, if this service is started, it will cause some negative system
consequences. These consequences can usually be deduced by considering the service,
the device upon which the service is acting, and the “affected resources” (below).

Clients should examine the Characteristics[] array and use this information to configure
the user session and avoid situations that would obviate the desired problem
determination goals.

4.3.1.2.4 Affected Resources
CDMV1 relies on the ResourcesUsed property of the DiagnosticTest class to publish the
system resources that will be affected or consumed by invoking the test. CDMV2 uses
the ServiceAffectsElement association to indicate the managed element(s) affected by the
diagnostic service and the ElementEffects[] property of this class to describe the actual
effect.

Clients should traverse this association to determine the system consequences of starting
the service.

4.3.1.2.5 Dependencies
It is common for a service to depend on other system activity for its successful execution.
A diagnostic test example is a NIC device under test that depends on TCP/IP being
started. It also may be important to “order” certain tests (SCSI interface test prior to SCSI
device test). The ServiceServiceDependency association and its TypeOfDependency
property are used to publish these dependencies.

4.3.1.3 Execute the Service
Once a service is chosen for running (considering all the system ramifications discussed
in the previous section), it is started by invoking the RunDiagnostic() method of the
DiagnosticService class. The diagnostic service method provider receives references to
the settings and managed element objects to be used in running the service, creates an
instance of ConcreteJob and returns a reference to it.

4.3.1.3.1 Starting a Job
A diagnostic Job is launched in the following manner:

• The diagnostic service provider creates an instance of ConcreteJob when its
RunDiagnostic() method is called and creates a globally unique InstanceID key
(see Section 4.3.2.1). A reference to the job object is returned as an output
parameter.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 32

• The diagnostic service provider creates the associations AffectedJobElement and
OwningJobElement so that the client can identify which diagnostic service owns
the job and what effects the job will have on various managed elements.

• The Job.DeleteOnCompletion property may be initialized to the value “False” to
prevent fast-executing Jobs from being deleted before a client can query for
results.

4.3.1.4 Monitor/Control the Service
The client can use the job object to monitor and control the running of the service with
the following properties and methods:

• ConcreteJob.JobState – property that communicates the current state of the job.
Values are: "New", "Starting", "Running", "Suspended", Shutting Down",
"Completed", "Terminated", "Killed", "Exception" and "Service".

• ConcreteJob.RequestStateChange() – method used to change the JobState.
Options are "Start", "Suspend", "Terminate", "Kill" and "Service".

• Job.PercentComplete – property that communicates the progress of the job.

• Job.KillJob() - A method to kill this job and any underlying processes, and to
remove any 'dangling' associations. This method is deprecated in V2.8 in favor of
RequestStateChange().

• Job.ElapsedTime: The time interval that the Job has been executing or the total
execution time if the Job is complete.

• Job.ErrorCode: A vendor specific error code. This will be set to zero if the job
completed without error.

4.3.1.5 Complete the Service
A service may be terminated using the above controls, or may complete normally, when
its work is done. The above controls are monitored by the client to determine when the
service is completed.

The useful outcome of running a service is generally presented as a series of messages
and data blocks that can be used by the client in the problem determination process. In
CDMV1, these were returned in the TestResults[] array of the DiagnosticResult class.
This has been made more flexible in CDMV2 by using the Log class. Service providers
will instantiate subclasses of DiagnosticRecord for logging data returned from the service
executable. These are aggregated to a log with the LogManagesRecord association. A
client may attempt to read these records by traversing the UseOfLog and
LogManagesRecord associations.

4.3.2 Correlation of Records
When information is recorded in a shared log, the life cycle of objects and the ability to
distinguish related objects through keys, tags, and instances of associations becomes
critical. The diagram below illustrates the relationships between objects in a re-entrant

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 33

CDM service provider environment using a shared log. It shows a single client initiating
two diagnostic services on the same device.

Legend:

Solid Arrows – Instantiations

Line Arrows – Associations

Callouts – Properties (I = InstanceID(key), R = RecordID(key))

Client

DiagnosticService

DiagnosticsLogJob1
(I1)

Job2
(I2)

Run1 Run2

MSE

UseOfLog

OwningJobElement

AffectedJobElement

Diagnostic
Service Record

Diagnostic
Service Record

Diagnostic
Service Record

Diagnostic
Service Record

Diagnostic
Service Record

Diagnostic
Service Record

Diagnostic
ServiceRecord

R1=I2:0

R2=I1:0

R3=I2:1

R4=I1:1

R5=I1:2

R6=I2:2

R7=I1:3

RecordInLog

Results Query

AvailableDiagnosticService

UseOfLog

The instances for the first request are shown using solid boxes, while the instances for the
second request are shown using striped boxes. This diagram also depicts a shared log.
Note that the diagnostic model does not dictate whether the message log is shared, unique
to each request, or external to the diagnostic service provider. It is recommended,
however, that a diagnostic log be firmly associated with the managed element and service
that caused it to exist. In this way, a client can more easily query for all records that
persist for a particular managed element or service.

The process flows as follows:

1. The client queries for available services and decides to run two instances of a
service on a managed element.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 34

2. The client invokes RunDiagnostic() with the appropriate settings and receives a
reference to Job1 (InstanceID = I1).

3. The service traverses the UseOfLog association to find which log to use. The
service is started and Job1 is used for client/service communication.

4. Similar actions take place for the second service instance and Job2 (InstanceID =
I2) is created.

Note that it is an implementation detail whether there are two instances of the
service provider running or the provider is able to handle multiple requests of this
kind.

5. Now two keyed Jobs are running, generating keyed log records. The next section
addresses these keys and how they should be constructed.

6. When a service completes, the Job associated with it should be deleted. The
results of the tests are obtained from the log and it’s aggregated
DiagnosticServiceRecords.

4.3.2.1 CDM Key Structure
Keeping object references distinct is critical in this environment. Object references
include key values for uniqueness, and a convention for key construction is often required
to guarantee this uniqueness.

4.3.2.1.1 ConcreteJob Keys
The ConcreteJob class contains a single opaque key, InstanceID. The MOF description
provides the following guidance for its construction:

“The InstanceID must be unique within a namespace. In order to ensure uniqueness, the
value of InstanceID SHOULD be constructed in the following manner: <Vendor
ID><ID>. <Vendor ID> MUST include a copyrighted, trademarked or otherwise
unique name that is owned by the business entity or a registered ID that is assigned to the
business entity that is defining the InstanceID. (This is similar to the <Schema
Name>_<Class Name> structure of Schema class names.) The purpose of <Vendor ID>
is to ensure that <ID> is truly unique across multiple vendor implementations. If such a
name is not used, the defining entity MUST assure that the <ID> portion of the Instance
ID is unique when compared with other instance providers. For DMTF defined instances,
the <Vendor ID> is 'CIM'. <ID> MUST include a vendor specified unique identifier.”

4.3.2.1.2 DiagnsoticRecord Keys
The DiagnsoticRecord class inherits two keys from LogRecord that are useful for
distinguishing log records: RecordID and MessageTimestamp. The MOF description
provides the following guidance for RecordID construction:

“RecordID, with the MessageTimestamp property, serve to uniquely identify the
LogRecord within a MessageLog. Note that this property is different than the
RecordNumber parameters of the MessageLog methods. The latter are ordinal values
only, useful to track position when iterating through a Log. On the other hand, RecordID

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 35

is truly an identifier for an instance of LogRecord. It may be set to the record's ordinal
position, but this is not required.”

DiagnosticRecord overrides the LogRecord.RecordID property in order to specify its
construction for diagnostic logs. The MOF description provides the following guidance
for RecordID construction:

"In order to ensure uniqueness and provide for efficient mining of
DiagnosticRecords that correspond a particular diagnostic ConcreteJob, the
RecordID key SHOULD be constructed using the following 'preferred' algorithm:
<ConcreteJob.InstanceID>:<n>, where <InstanceID> is <OrgID>:<LocalID>
as described in ConcreteJob and <n> is an increment value that provides
uniqueness. <n> SHOULD be set to "0" for the first record created by the job and
incremented for each subsequent record."

4.3.3 Using the Physical Model for FRU Identification
The diagnostic CIM client has the ultimate responsibility for obtaining and analyzing
state and FRU information. Providers can help through local schema extensions, giving
in-house providers a boost in performance and possibly fault analysis capabilities. Such
extensions are nonstandard so they cannot be depended upon when leveraging industry
providers. The client must be prepared to provide the minimum capabilities of error
analysis and FRU reporting. This means providing the ability to trace the test
associations to the physical model as far as it is implemented on the system.

The client first queries the association DiagnosticServiceForME which associates the
diagnostic test to either UnitaryComputerSystem (in which case you are done) or a type
of logical device that could be under NetworkAdapter, Controller, MediaAccessDevice,
or StorageExtent.

If the Diagnostic test is associated to a type of logical device, the client needs to query the
Realizes association that associates the given logical device to an instance of the static
class PhysicalElement that contains the part information.

Finally, the client queries the aggregation associations FRUPhysicalElements that
associates the PhysicalElement to the field replaceable unit, FRU class, which contains
field replaceable unit information.

It is also recommended that diagnostic services assist with FRU reporting and additional
fault information when the test knows about the physical device under test or can obtain
fault data. The “Hardware Configuration” record type may be used to post known FRU
information to the message log.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 36

5 Future Development
At the time of this writing, CDM has defined and mostly implemented two versions,
CDMV1 and CDMV2. Support for CDMV1 will be dropped with CIM V3.0. CDMV2
will continue to be extended and enhanced; there is no plan for a CDMV3 at this time.

5.1 CIM Indications
Indications are useful for generating accurate progress indications, communicating
current status, alerting on error, etc. Since CIM Indications are not supported in WMI, the
diagnostic modeling group delayed consideration of these features. As CIMOMs that
support the current model become more pervasive, we will add the functions that rely on
indications into the CDM.

5.2 Interactive Testing
Some diagnostic use cases require interactive job control, for example:

• A test that requires operator intervention (e.g., “Insert loopback plug.”).

• Special cases where a diagnostic might want to request information from the
diagnostic service before executing the start diagnostic method.

• Interactive debug sessions requiring prompts and responses.

The diagnostic model currently contains a DiagnosticTest.Characteristics = “Interactive”,
but does not define a mechanism for a client to communicate with the test through the
diagnostic service provider. Without such a mechanism it is impossible to implement
interactive tests that could be managed by WBEM standard client applications. We have
discussed extending jobs to provide support for such interactive tests in a future version
of the CIM schema.

Since not all diagnostic providers are expected to support interactivity, a mechanism is
necessary to publish the interactive capabilities that the diagnostic service supports, such
as:

• No interactivity

• Simple query - the query is a simple display of a message in which the user can
only select OK or cancel. An example use case would be a message to the user to
insert a loop-back plug before proceeding with running the test.

• Query with data - the query would display instructions to the user to set a value to
pass back to the test. The user would type in the value and select OK which
would cause the client to write the parameter into the message box property and
resume execution of the test. An example use case is an interactive debug mode
within the diagnostic test. This would allow debug command parameters to be
passed back to the tests through a message box.

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 37

5.3 Diagnostics DTD/XSL
The diagnostic CIM client and its GUI program currently handle formatting of data
returned from running diagnostic services. It would be desirable, in some environments,
to produce a standard form of the output, regardless of the source and user interface. This
is most easily achieved by defining a Data Type Definition (DTD) and/or and eXtensible
Style Language (XSL) style sheet.

5.4 Services
CIM V2.8 added a superclass to DiagnosticTest in anticipation of additional services that
would have different property and method requirements from a standard test. New
service types have been identified, but not yet added to the model.

5.4.1 Daemons
In the problem determination environment, daemons are monitor programs that run in the
background and look for the existence or emergence of a problem. They are interested in
resource contention and over-consumption, predictive failure analysis indications, and
any published support for system health events. When the daemon discovers a potential
or existing problem, it can alert an administrator and/or initiate some corrective action.

5.4.2 Exercisers
Exercisers are programs written to stress system components to either expose early
failures or to cause intermittent problems to occur more often for the purpose of problem
determination. They are useful in manufacturing, burn-in, and active debug session
environments.

5.4.3 Executives
An executive service is a means to start up external control programs through CIM.

5.5 Logging
Eventually, enabling the direction of selected message types to one or more destinations
with various message-logging mechanisms should also prove to be more efficient and
versatile. The ability to specify not just a LogType but also its "logical/physical"
destination will be a major improvement over the present schema. However, this change
has been put off until a future version of the CIM schema to fully comprehend the issues
of directing messages to 3rd party providers such as a system event log. It is anticipated
that any of the LogOption values (message types) will be able to be specified more than
once, in order to direct the same message to more than one message log destination.

5.6 Self Healing and Autonomic Healthcare
The ultimate goal of the CDM is to provide an infrastructure that supports “self-healing”
systems. Utilizing the base built in the first and second versions, an AI-based data

CIM Diagnostics Model White Paper Version 1.0

November 3, 2004 38

consumer could use the diagnostic results along with other CIM data to provide a “self-
healing” function.

End of Document

