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The deficiencies in both the LDAPv2 and v3 pro-
tocols are described here, along with the solutions that
have been and are being standardized within the
IETF to rectify them. The deficiencies are docu-
mented initially for a centralized directory service, in
which a single standalone LDAP server is used to sup-
port a single PKI, and secondly for a distributed direc-
tory service, in which there are many LDAP servers
that must cooperate in order to support a network of
interconnected PKIs.

Centralized LDAP Deficiencies
Certificate and CRL Retrieval. The first attempt to
support certificate retrieval using LDAPv2 was docu-
mented in [6]. Unfortunately, it did not work because
the LDAP native encoding of a certificate converted it
from its ASN.1 BER  (basic encoding rules) type,
length, value binary encoding, into a simple LDAP

ASCII string, and this is an irreversible process for dis-
tinguished names. It is a many-to-one encoding as rel-
ative distinguished names (RDNs) can be of type
teletex, printable, or universal string. Consequently
when the LDAP client tries to reconstitute the ASN.1
binary from the ASCII string (in order to validate the
signature on the certificate) it proves impossible with-
out producing possibly hundreds of different ASN.1
BER encodings. Checking the signature against each is
not practical. A more sophisticated LDAP native
encoding for RDNs, for example by encoding the type
as well as the value, could have solved the problem for
certificates, but at the expense of complicating all
LDAP operations, since RDNs are a predominant data
type. The most obvious solution is to deprecate the
LDAP native encoding in [6] and to transfer the cer-
tificate or CRL in its binary format so that the ASN.1
BER encoding is preserved. This solution was adopted
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for LDAPv2 and is documented in [1]. The solution
works in most cases, and is used by PKI LDAPv2
clients successfully. However some LDAP clients, such
as some versions of Netscape Communicator, still do
not interpret the certificate properly when it is
retrieved. They attempt to display it as a single stream
of binary characters in the browser window, rather than
decoding the ASN.1 into its constituent parts.

When LDAPv3 was specified, it overcame the
encoding bug of LDAPv2 by introducing the concept
of transfer encodings as part of the new attribute
descriptions. Attribute descriptions are used to option-
ally qualify attribute type definitions, primarily to indi-
cate attribute subtypes. However, one special option,
the ;binary transfer option, was built into the base
LDAPv3 specification [10]. The ;binary option was

used to indicate a special type of transfer encoding
(ASN.1 BER) rather than an attribute subtype. When
the ;binary option, for example, userCertificate;binary,
is used by a client to describe an attribute it wants to
retrieve, it mandates the LDAPv3 server to return the
attribute values encoded using the ASN.1 BER rather
than in their LDAP-defined native encodings. In this
way, when used to retrieve signed attributes such as cer-

tificates and CRLs, the client can validate the signatures
against the binary values. 

Many LDAPv3 clients and servers correctly support
the ;binary transfer option as defined in the proposed
standard [10]. However, some do not, and further,
some LDAP servers do not recognize that a userCer-
tificate attribute stored by an LDAPv2 client is the
same attribute that an LDAPv3 client is trying to
retrieve as a userCertificate;binary attribute. Finally, if
LDAPv3 were to define a new transfer encoding, say
;xml, then implementations that did not recognize this
would consider it an unrecognized attribute subtype
rather than a new transfer encoding (which only goes
to confirm the folly of using the same protocol feature
to indicate two different concepts). For these reasons
the current revision of LDAPv3 [9] has removed the
concept of ;binary from its specification and the PKIX
Internet Draft (ID) [4] has said that the native LDAP
encoding for PKI attributes is ASN.1 BER rather than
ASCII, thus bringing equality to LDAPv2 and
LDAPv3. Unfortunately, this will cause some interop-
erability problems in the short-term as products
migrate from the old specification of LDAPv3 to the
proposed new one. How this migration will be man-
aged is still being actively debated in the IETF. 

LDAPv3 Complexity. LDAPv3 is a complex pro-
tocol. It has many sophisticated features built into it, so
it can incorporate all the richness needed of a general-
purpose directory access protocol (just like the original
X.500 DAP). Many of these features are not needed for
simple PKI certificate and CRL retrieval, and so an
LDAPv3 profile [3] is being specified by the PKIX
working group. This profile specifies the features of
LDAPv3 mandatory to support a PKI, those features
that are optional and those that are not needed for a
PKI. This ID was about to go to Last-Call in the
PKIX working group (Last-Call is the penultimate
stage to becoming a proposed standard RFC in the
IETF standardization process) when one controversial
item arose. The profile states that LDAPv3 servers
must support multi-valued RDNs as this allows
RDNs to be both user-friendly and unique (for exam-
ple, CN=David Chadwick+SerialNumber=12345),
but Microsoft’s Active Directory does not support this
feature and has no current plans to. So this issue cur-
rently remains unresolved.

Searching for the Correct Certificate or CRL.
Simple PKIs usually only store single certificates in
each user’s directory entry, and only one CRL in each
distribution point. But how does an LDAP client know
which entry to retrieve? The client needs to be able to
specify filtering criteria that tell the LDAP server which
entry or entries to select. For example, “Find the entry
for the person named Carly Simon and return her
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Figure 1(a). Child entries.
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userCertificate attribute,” or “Find the userCertificate
attribute containing the email address
carly.simon@someorg.com.” Unfortunately no certifi-
cate or CRL matching rules have been standardized for
LDAP (although they are for X.500 DAP). Thus the
latter search cannot be requested without some work-
around procedure.

PKI administrators cope with this problem today by
creating one or more new attributes in the user’s entry,
in parallel with the userCertificate attribute. These new
attributes each contain the contents of one of the fields
of the user’s certificate that are to be searched for, for
example, the mail attribute holds the contents of the
rfc822 value from the subjectAltName certificate exten-
sion, or the serialNumber attribute holds the certificate
serial number. The LDAP client can then search for the
entry containing these new attributes and ask for the
accompanying userCertificate attribute to be returned.
Hopefully the certificate will be the one that matches
the user’s search criteria. 

But this ad-hoc approach places a large burden on
the directory/PKI administrator, who must ensure the
new attributes are kept synchronized with the contents
of the user’s certificate, and there is no agreed standard
schema for these new attributes. Furthermore, this
solution has security implications. The underlying
security model for X.509 is that the directory service is
not trusted; only the Certification Authority (CA) is
trusted. The directory server may be open to attack,
and wrong attributes inserted by the attacker. Conse-
quently, CRLs and certificates are digitally signed by
the CA to prevent unauthorized tampering, but the
new attributes inserted by the directory/PKI adminis-
trator are not signed, and thus can be tampered with
without it being immediately obvious. (The client
would have to check that the contents of the retrieved
certificate truly did match his filtering criteria and the
directory/PKI administrator would continually have to
check that the new attributes matched the contents of
their peer certificate.) Finally, this solution does not
work when the user has two or more certificates, since
there is no way of pairing the new attribute values with
particular userCertificate values. This is because
attribute values are held as an unordered set and not in
any defined order. Clearly a better solution is required.

A relatively new ID [7] has started to standardize the
schema for these new attributes (but currently only for
userCertificates), and also recommends that the each
certificate and its corresponding attributes should be
stored in a separate entry subordinate to that of the cer-
tificate holder (see Figure 1a). This pragmatic approach
solves many, though certainly not all, of the certificate
searching problems.

The IETF PKIX group has published a more com-

prehensive though complex solution. An ID [4] speci-
fies LDAP encodings for matching rules and assertion
values for both certificates and CRLs, based on those in
the X.500 standard. This allows the client to specify its
filtering criteria, and the server will match directly on
the contents of the certificate or CRL, rather than on
the contents of some peer attributes. The client can
then be assured the returned certificate or CRL matches
the one(s) requested. The simplest of these matching
rules, certificateExactMatch, has already been imple-
mented in OpenLDAP release 2.1. And at least one
vendor of X.500-based LDAP servers also supports a
subset of these matching rules in their server. However,
clients will need to be updated in order to support these
new matching rules and assertion values. 

Users with Multiple Certificates. As PKIs become
more advanced, users will start to be issued with several
certificates. For example, a user might have a certificate
for creating digitally signed messages, a certificate for
receiving encrypted S/MIME email, and a certificate to
be used for nonrepudiable e-commerce transactions. If
all these certificates are stored in the user’s entry—which
is the natural place to store them—then LDAP clients
have an additional problem (this is assuming that the
matching rules mentioned previously have been imple-
mented so that a client can search for a particular cer-
tificate, for example, find the S/MIME encryption
certificate for A.Person@e-commerce.site.com). 

The problem is there is no standard way in LDAP to
ask the directory server to only return one certificate
from the user’s entry. Both LDAP protocols are only
capable of returning all the attribute values from a par-
ticular attribute, or none of them. It is not possible to
ask for a subset of the attribute values. This causes a
problem for the client software if several certificates are
returned when only one was being sought. The client
software will have to implement complex matching
rules to parse each certificate and find the correct one.
This is both time-consuming and unnecessary. If the
LDAP server has already implemented the certificate
matching rules mentioned previously in order to find
the correct certificate, it should surely be able to return
just the desired certificate to the client, rather than all
or none of them. 

DAP already has a solution to this problem, a
Boolean variable that asks for only matched values to be
returned. The IETF LDAPEXT working group ini-
tially decided to add this Boolean to LDAPv3, but
upon rigorous examination found a simple Boolean to
be deficient when complex filters were being specified
by the user. For example, in a multiple OR filter, where
only one filter item matches an attribute value, should
the other filter items that did not match on any
attribute values cause none of those values to be



returned (the Boolean is obeyed), or all values to be
returned (the Boolean is ignored). The matched values
ID [5] specifies an extension to the LDAPv3 protocol
that allows the user to say precisely which value or val-
ues should be returned. This ID has now been through
Last-Call and should soon be published as an RFC.
Furthermore, it has recently been implemented in
OpenLDAP release 2.1. Unfortunately, it is not possi-
ble to specify this extension in LDAPv2, as LDAPv2 is
a fixed protocol with no mechanism for extending it.

How do most PKI implementers cope with this

problem today? Basically they have to ensure each cer-
tificate attribute only holds a single certificate attribute
value. This can be done in one of two ways, either by
creating new certificate attributes for each type of cer-
tificate (for example, smimeEncCert, smimeNRcert),
or altering the structure of the directory information
tree (DIT) to fit the PKI applications. The former
method is problematical, as some PKIs are not capable
of changing the attribute type used for publishing cer-
tificates—they always assume the X.509 standard
attribute type (userCertificate) is used. The latter
method is sure to work with all PKI implementations,
and is usually executed in one of three ways. 

The first and second ways keep the existing DIT
structure intact, but add extra entries for each user, as
new certificates are issued. This ensures that only a sin-
gle certificate is ever stored in each entry. The new
entries are created either subordinate to the user’s exist-
ing entry (as depicted in Figure 1a) or as siblings of the
existing entries (as depicted in Figure 1b). The entries
are typically given names that indicate the type of cer-
tificate stored within them. The third way creates a new
DIT subtree for each PKI application, and users have
separate entries in each parallel application tree (see
Figure 2). Note that whether the organization uses DC
or X.521 naming is immaterial to the examples. 

A disadvantage of the first way is that some LDAP
browsers expect common name (CN) entries to be leaf
entries, and cannot cope with them being non-leaves.
A disadvantage of the second way is that a user’s name
is prefixed with the type of certificate contained within
the entry. A disadvantage of the third way is that new
tree structures have to be built for each application
(although this can be an advantage if the application is
to be the sole user of the new subtree).

Distributed LDAP Deficiencies
Once PKIs start to link together, via either CA hierar-
chies, cross certification, or bridge CAs, then PKI users
will need to have access to the certificates and CRLs
contained in each of the PKI directory services. Thus,
ideally we need a distributed directory service made up
of all the individual PKI LDAP directories. Experience
to date, for example with the U.S. Federal PKI [2], sug-
gests that an X.500-based distributed directory with
chaining, using LDAP for client access, provides the
only workable solution. LDAP-only servers are cur-
rently not up to the task of building distributed direc-
tories. Why is this?

LDAP was initially conceived as a lightweight front-
end protocol to a distributed X.500 directory service.
Consequently, LDAPv2 had no need to support distri-
bution, as the X.500 servers used the Directory System
Protocol (DSP) for chaining. The types of features that
a distributed directory service needs are:

• The ability of the servers to know about other
servers (in X.500 these are called knowledge refer-
ences, in the DNS these are the NS and A resource
records) and how to interact with them; otherwise
the client has to know the whereabouts of all the
LDAP servers it wishes to contact, and has to
choose the correct one for each request that it issues;

• The ability of the servers to pass client requests
between themselves (in X.500 these mechanisms are
called chaining and referrals, in the DNS these fea-
tures are called the recursive and iterative modes
respectively), otherwise the client has to contact
each server separately and track its own progress,

• The ability of the servers to perform distributed
authentication, otherwise the client has to have sep-
arate authentication credentials (typically passwords)
for each LDAP server it wishes to contact. The
DNS does not suffer from this problem, as its look-
ups are unauthenticated.

Chaining and Referrals. LDAPv3 made a start on
providing a distributed directory service by adding
referrals to the LDAPv3 protocol [10]. Some LDAP
server suppliers, mainly those that have built their
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LDAP service around their X.500 servers, also provide
LDAP chaining. However, referrals on their own are
insufficient, since servers need a standard way of using
them.

Knowledge References. X.500 defines five types of
knowledge reference (superior, immediate superior,
subordinate, cross and nonspecific subordinate) plus

two for use in replication (consumer and supplier).
There have been several attempts over the last five years
to standardize equivalent LDAP knowledge references.
Why these failed to progress past Internet draft stage is
difficult to assess. However, during 2000 there was a
resurgence of interest in this topic, and finally a RFC
[12] has been published. Although this only standard-
izes one type of LDAP knowledge reference—subordi-
nate—this is undoubtedly one of the most important
types for distributed directories, and perhaps once this
is fully implemented then standardization of other
types may follow.

PKIX Certificate Extensions. Because LDAP direc-
tories were typically standalone directory islands that did
not have knowledge of each other, the IETF PKIX
group specified several certificate extensions designed to
allow PKI clients to find the correct LDAP directory for
their needs. This was effectively building LDAP knowl-
edge references into certificates. First, they specified the
precise contents of the X.509 CRL Distribution Points
extension. This extension informs the client where
CRLs may be found, and when CRLs are located in an
LDAP directory, PKIX mandates that the distribution
point name must be a LDAP Uniform Resource Identi-
fier (URI), for example, ldap://directory.ja.net/cn=dis-
tribution point, c=gb. 

Secondly, for hierarchical PKIs, subordinate CAs may
include in their issued certificates a list of their superior
CAs up to the trusted root of the hierarchy, along with

the LDAP URIs of their directory services, for example,
ldap://superior.directory.com/o=superiorCA, dc=myorg,
dc=com. This information is held in a newly defined
Authority Information Access extension. 

Finally, for cross-certified CAs, the cross certificate
may hold the location of the certified CA’s LDAP direc-
tory in a newly defined Subject Information Access exten-
sion for example, ldap://ldap.otherCA.com/o=crossCA,
dc=orgname, dc=com.

Unfortunately, at this point in time, the PKI-defined
extensions are not widely implemented. Certainly if the
CRL Distribution Points extension had been widely
supported, there would not have been the huge prob-
lem experienced by Microsoft when in March 2001 it
was publicized that Verisign had been duped into issu-
ing two code-signing certificates in the name of
Microsoft, to a non-Microsoft employee (CERT Advi-
sory Note CA-2001-04). Once Verisign had discovered
its error and revoked the certificates, PKI clients could
have automatically retrieved the CRLs, instead of
Microsoft having to hastily release a Windows Security
Update.

Distributed Authentication. X.500 defines three
mechanisms for distributed authentication. Two rely
on the directory servers having a trust relationship
between themselves, and all rely on them knowing each
others’ credentials. In the first mechanism, the user
binds to its local server and is authenticated by it. The
level of authentication could be none, password- or dig-
ital-signature based. The user then sends its request to
the local server. If the local server is unable to fulfill the
request, it binds to the remote server and chains the
user’s request to the latter. It tells the remote server the
name of the user and the level of authentication that it
has performed. The remote server then allows the user
to have access to the appropriate amount of directory
data, as directed by its access control policy. 

In the second mechanism, which is only designed for
password-based authentication, the user binds to a
remote server using the same credentials it would nor-
mally use for its local directory server. The remote server
binds to the local server, and after establishing a trusted
link, issues a Compare operation to the local server, pass-
ing the user’s credentials. The local server is then in a
position to check these credentials and pass a True/False
reply back to the remote server. (Note that this latter
method can only work securely if the link is secure, or
the credentials are encrypted prior to transfer.) 

The third mechanism relies on the user sending
digitally signed requests to its local server, which in
the case of nonfulfillment, are chained to the remote
server. The remote server must then validate the digi-
tal signature on the request and fetch any CRLs from
the local server as appropriate.
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LDAP does not have a standardized way of per-
forming distributed authentication. It does not support
chaining, which rules out the first mechanism, nor
signed operations, which rules out the third mecha-
nism. LDAP servers could be built to support the sec-
ond mechanism, but it has to be said that this is the
weakest of the three X.500 schemes. However, proxy
authorization is a possibility. Proxy authorization is a
feature of the Simple Authentication and Security
Layer (SASL) [8] that is used in LDAPv3 Bind opera-
tions. In a SASL Bind, a client may specify an autho-
rization identity that is different from its authentication
identity. This allows a server, acting as an LDAP client,
to authenticate to an LDAP server as itself but then to
perform an action on behalf of its user. If the local
LDAP server acts as the client, then it can perform an
operation on a remote LDAP server on behalf of its
user (see Figure 3). This mechanism relies on a trust
relationship existing between the two LDAP servers.

Release 2.1 of OpenLDAP supports this proxying
feature to the extent that it can act in the remote server
role, but not in the local server/client role. In order for
this to work in a controlled manner, the OpenLDAP
implementation holds the following information: 

• Authentication information for the local server; and 
• Policy information that controls the user authoriza-

tion identities the local server is allowed to assert
(this minimizes the trust relationship the remote
server must have). 

Note that there are a couple of drawbacks to this
approach. The first is that compromise of the local
server can result in unauthorized access to the remote
server. The second is that the local server must have
separate sessions to the remote server for each user for
which it is concurrently acting as a proxy. This disad-
vantage is not suffered by the X.500 distributed
authentication schemes one and three, as the local
server does not act as a proxy for the user, but rather
chains the user’s request via the DSP. The DSP carries
either the user’s DN in its chaining arguments (mech-
anism one) or the user’s signed request (mechanism
three). To solve this problem, LDAP needs to mirror
the DN carrying feature of the DSP, by adding a con-
trol to each LDAPv3 chained operation to present the
client’s authorization identity. Such a control is speci-
fied in [11]. This will allow LDAP operations from
multiple clients to share a common connection
between the local and remote servers. While 
OpenLDAP plans to implement this feature in a sub-
sequent release, again it will only be in the remote
server mode, and not the local server mode. Thus,
much more effort is required in order to make LDAP

servers capable of building a distributed directory
service.

Conclusion
The many deficiencies in the LDAP protocols when
they are used to access PKI-related information have
been highlighted here. These are mainly because
LDAP was initially conceived as a protocol to access a
distributed X.500 directory. However, the IETF has
been steadily addressing these deficiencies over the past
few years, with the consequence that by the end of
2003 it is anticipated that standard solutions should be
available to address most of the identified deficiencies.
Unfortunately, specifying standards on its own is not
sufficient to build a distributed LDAP directory ser-
vice. Products will still be needed that implement
them.  
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